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LEITER TO THE EDITOR 
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§ Departamento de Metodos Matemlticos de la Fisica, Facultad de Ciencias Fisicas, 
Universidad Complutense, 28040-Madrid, Spain 

Received 5 May 1988 

Abstract. An integrable system in two discrete spatial variables and a continuous time is 
presented. It contains the Volterra model as a particular case. Both the system and their 
solutions are characterised into the framework of asymptotic modules. Rational and 
soliton-like solutions are exhibited. 

This letter is part of a series devoted to a new method for introducing integrable 
non-linear equations ( N E )  and characterising their solutions. Here we are concerned 
with the following ( 2  + 1)-dimensional integrable model in two discrete ‘spatial’ vari- 
ables (n, m )  E Zz and a continuous ‘time’ t E R: 

where b = b( n, m, t )  is a complex-valued function and 6 , ~  are the translation operators 
for the discrete variables 

5 d n ,  m) = A n  - 1, m )  v d n ,  m )  = A n ,  m - 1). 

We note that by dropping the m dependence our model reduces to the Volterra equation 
[I ,  21 

~ , C / C = ~ ( [ + ~ - I ) C  c = (bo/ bo. ( 2 )  

Since ( 2 )  is a discrete version of the Korteweg-de Vries equation, (1) may be considered 
as a discrete analogue of the Kadomtsev-Petviashvili equation. 

Broad classes of solutions to (1) can be obtained by means of certain objects called 
asymptotic modules (AM).  As an illustration of this procedure we deduce the one- 
soliton solution 

b ( n ,  m - 1 ,  t )  2 sinh (Y sinh[$( a + p ) ]  
b ( n + l ,  m, t )  = 1 +  cosh(an+pm+wt)+cosh[i(a-p)]  ( 3 )  
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as well as the rational-like solution 

2[1+(-1)"+"] 
1 + 2[n + ( y 2  - 1)(y2+ 1 )-'m - 2( y 2  + ~ - ~ ) t ]  ' 

b(n ,  m, t )  = 1 - (4) 

In this letter proofs are only outlined. A full account of our work will be published 
elsewhere with the investigation of a more general discrete (2 + 1)-dimensional model 
and the analysis of the continuous limit. 

Generally speaking an AM is a set of matrix-valued functions cp(  k, x, y,  . . . , t )  with 
a difference-differential structure in the discrete or continuous parameters (x, y ,  . . . , t )  
and an 'asymptotic' analytic structure in k around some poles K , ,  K 2 , .  . . , on the 
Riemann sphere. These two structures are coupled thanks to a $&module structure, 
where 9 is some ring of linear difference-differential operators. Then some N E  connect- 
ing some 'asymptotic' coefficients depending on x, y,  . . . , t may arise as a compatibility 
condition between the difference-differential and the analytic structures. AM of the 
'same type' lead to the introduction of the same N E  for which each of them affords 
one solution. In 'good' cases these NE are purely difference-differential and involve a 
small number of unknown functions. More information on the AM scheme is given in 

In the present work, by an AM we mean a set 9 of complex-valued functions 

( 5 )  

and (n, m) E Z2, t E 02, k belongs to a subset U c C symmetrical with respect to k = 0 
and admitting k = a) and k = 0 as boundary points, and G( k, n, m,!) is a C" function 
of t. The related set of functions $(k, n, m, t )  will be denoted by 9. We also suppose 
that the tollowing properties are satisfied. 

(a) 9 is a set of 'asymptotic' rational functions around CO and 0, with an 'asymptotic' 
unit element. 

(b) 9 is a C-linear space and is invariant under the action of the operators 5, ( - I ,  

7)  and a,. (As a consequence 9 is a left %module where 9 is the ring of linear 
operators generated by { yo+  y l S +  y 2 ( - ' +  y 3 9  + y d , ,  where yj E C}). 

~ 3 1 .  

cp(S n, m, t )  = $(k, n, m, tlfo(k, n, m, t )  where 

fo( k, n, m, t )  = k-" ( k  + k-l)-"' exp[ ( k 2  - k - 2 )  t ]  

(b') 9 is invariant under the involution k - ,  -k .  
More precisely (a) has the following meanin?. 
(i) Any $ E 4 admits asymptotic expansions (AE)  around CO and 0: 

( 6 )  

where N, M E N and the coefficients c,, d - ,  are functions of (n, m, t ) .  

its AE at m and 0. Note that (ii) generalises a property which is obvious for the ring 
3 of (true) rational functions with possible poles at CO and 0 only. It is useful to 
associate with the asymptotic rational function 8 its 'normalisation' defined as the 
(true) rational function in %: 

(ii) Any 4 E @ is determined by the principal parts c,kq and Z,=, M d- ,kWq of 

N M 

q=o , = I  
G r  $ = cqkq + c d-qk-q.  (7)  

Then we can formulate (ii) in the form: the prjection Nyr: .$+ % is one-to-one. 
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A A  

(iii) .@ contains a privileged function f such that N o r f =  1 .  
Observe that fo( - k )  = (-1 )"'"'fo( k )  k e  omit the (n, m, t )  d e p e e n c e ) .  Prfperty 

(b') implies that g (  k )  =f( - k )  E 9 and Nor g*( k )  = ( -l)n+m. Since Nor(; 1)""f (t) = 
(-l)"+"', itAfollows from (ii) that g ( k )  = (-l)"+"f(k), or equivalently f ( - k )  = f ( k ) .  
Therefore f has AE of the form 

W m 

f -1 + 1 u2qk-2q f a b (  1 + q = l  1 biqk2q). 
03 q = l  

On the other hand, by comparing normalisations and using (ii) it is easy to see 
that every function of 9 can be written as a linear combination of the elements 
(5": q E Z} with coefficients being k-independent functions of (n, m, t ) .  

In particular the expansion of 77f yields the equation 

[ .-t-(&)t-']/ =o. 

By inserting the AE (8) of f into (9) we get 

( 9 )  

In the same way a,f can be expanded in terms of { t P f :  - 2 s p  G 2 }  and we obtain 

By inserting thc AE at k = 0 of f  into (11) and using (10u) we find 

Now equation (1) follows at once from ( lob )  and (12). 
In conclusion any AM provides a solution to equation (1). 
A natural way of constructing AM is to consider a equations [4,5] of the form 

y = l l R 2 r ( k ,  I )+ ( f )d lAdr  k E C - (0, i, -i} 

where r ( k ,  I )  is a given function such that SUPkeC Ir(k, 1)1 goes to zero fast enough as 
k tends to any of the values 0, i, -i, 00. Let 9 be the set of solutions cp( k, n, m, 1 )  to 
(13) which are bounded near i and -i and are such that the functions 6 = cp&' admit 
AE of the form ( 6 )  at 0 and 00. By applying the generaked Cauchy formula one can 
prove that 6 satisfies an integral equation (1 - J ) 4  = Nor 6 where the kernel of the 
integral operator J is determined by the distribution r ( k ,  I ) .  With reasonable assump- 
tions on r ( k ,  I )  the operator 1 - J  turns out to be invertible and, as a consequence, 4 
satisfies condition (ii)  for AM. From its very definition 9 verifies conditions (i)  and 
(b) too. Regarding (b') it is enough to demAnd>hat r(k, I )  satisfies r(k, I )  = -r(-k, -I) .  
Therefore, provided the solution f with Norf = 1 exists, the set 9 is an AM. 
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If r (k ,  I)  is a linear combination of delta functions the corresponding solutions of 
(1) can be computed easily. For example if we take 

r ( k ,  I )  =? C(k ,  I ) [ S ( k +  ko)6(1+ I,) - S ( k  - k,,)6(1- l o ) ]  
2i 

where ko,  Io E C'= C - (0, i, 4 )  and 

(k l ) - ' / '  ( k  + k-')'''( k -- i2) 
C ( k ,  I )  = -- - 

2 1+r' 

then the integral equation for f reduces to a trivial linear system which leads to the 
one-soliton solution (3) with 

a =log(?) p =log (;I - ;;I) 

There are other possibilities for constructing AM (see the first preprint of [3]) which 
lead to interesting classes of solutions, such as the rational or finite-gap ones. An 
example of the strategy for obtaining rational solutions is the following. Given y E 43' 
let 9 be the set of functions cp(k, n, m, t )  = $(k, n, m, r)fo(k, n, m, r )  such that $( k) is 
analytic in C - {* y }  with at most single poles at k = * y  and verifying c+ + c- = 0, 
d+ + d-  = 0, where G ,  d ,  are the first coefficients of the Laurent expansions of cp around 
k = * y :  

In addition we demand that $ admits asymptotic expansions of the form (6). It is 
easy to prove that 9 is an AM. The corresponding function f with unit normalisation 
is given by 

f = (1 +&o W 

with 

2y2[1+(-1)"+"] 
1 + 2[n + ( y - y - ' ) ( y  + y - ' ) - ' m  -2(y2+ ~ - ~ ) r ]  W(n,  m, t )  = 

which leads at once to the solution (4) of our model. 

MM and LMA wish to thank Professor P C Sabatier and the Laboratoire de Physique 
Mathimatique de Montpellier for their warm hospitality. 
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